CONVECTIVE HEAT TRANSFER IN CHANNELS
HAVING VARIOUS CROSS SECTIONS

B. B. Petrikevich ULC 536.25

A method is proposed for calculating symmetric and nonsymmetric convective heat transfer
in channels having various cross sections. The turbulence model is based on a statistical
approach to the determination of the turbulence characteristics. A zero-gradient type re-
lationship is established between the kinetic energy of the pulsation motions and the Reynolds
stresses.

Modern equipment carrying heavy heat loads generally employs flat, annular, or tubular channels
for cooling. Owing to the large Reynolds numbers of the flow and the relatively short channels there is
andeveloped turbulent flow over a significant part of a channel. Moreover, the heat-transfer condition
may cause the channel walls to be at different temperatures, producing flow asymmetry, or there may be
variation in the temperature of the walls along the length of the channel. Thus it is not always possible to
use the familiar experimental relationships in heat-transfer calculations. A sufficiently well-founded tur-
bulence model, permitting determination of heat and momentum transfer, must be used when we devise
numerical methods for the calculations.

Here we shall consider a turbulence model based on a statistical approach to the determination of
the turbulence characteristics. The equation system describing convective heat transfer for two-dimen-
sional flow of a viscous nonisothermal fluid includes the continuity equation
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The pulsation components occur in (2) and (3) because the system (1)~(3) is not closed. The concept
of the turbulent viscosity
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Fig. 1. Variation of integral turbulence scale over flow width: the dots
correspond to the experimental data of Conte Bellot {(channel), Favre,
et al. (plate), and Zakharov, et al. (plate).

Fig. 2. Coefficient A as function of turbulence Reynolds number; the
dots correspond to the experimental data of Laufer (channel), Laufer
{tube}, Conte Bellot (channel), Klebanov (boundary layer), Favre, et al.
(boundary layer), and Bradshaw (boundary layer).

is now widely used in determination of the Reynolds stresses in (2); it is assumed to depend on either the
local average flow characteristics [1, 2] or the local pulsation flow characteristics [3], or on both [4].

The analogy between the transfer of heat and momentum is ordinarily used to determine the pulsa-
tion flow of heat in (3) by introducing the turbulence Prandtl number

. pE
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As we see from the gradient representation of the Reynolds stresses (5), the extrema of the mean velocity
should correspond to the zeros of these stresses. Experimental investigations [5] of nonsymmetric flows
have shown, however, that the Boussinesq hypothesis is inapplicable to such flows.

(6)

Other approaches have recently been used to describe the turbulence mechanism. They make it pos-
sible to avoid the Boussinesq hypothesis and to establish direct relationships between the turbulence char-
acteristics; we shall make use of just such an approach here. Following the ideas of [6], we write the
Reynolds stresses in the form

—pu'v’ = pAEy, (7)

3
where E = 1/2 2 u{z is the turbulence intensity which when multiplied by the density equals the kinetic
i=1
energy of the pulsation motions; the intermittence coefficient y [7]aliows forthediffusion of large-scale
vortices carrying Reynolds stresses of opposite sign near the channel axis. The proportionality factor A
in [8] is agsumed to be constant over the flow width and equal to 0.15. In [9] A is taken to equal 0.3, al-

though doubt is expressed as to the validity of this assumption.

Here we shall take A to be a function of the turbulence Reynolds pumber R = VELp/u, constructed
from the local turbulence characteristics. Figure 1 shows the way in which the integral turbulence scale
L varies over the flow width. Here y is the distance from the channel axis; 6 is the distance from the
wall at which the velocity u becomes equal to 0.995 times its maximum value. Figure 2 shows the form
of the A = A(RT) relationship; it was obtained by processing the experimental data of various authors.
The turbulence intensity E is found from the pulsation~motion kinetic-energy conservation equation which
has the following form for our case [7]:
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As in [8], we neglect the v'p' correlation; the pulsation diffusion of turbulence intensity is assumed to be
proportional to the effective transfer rate
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Following [10] we write the dissipative component in the form

E3° i 3,93 -~ 0,202Rr
T G{(Ryr) = P .

In determining the pulsation heat flux in (3) we decided to avoid introducing the turbulent Prandtl num
ber and to establish direct relationships between the fields of hydrodynamic and thermal pulsating quanti-
ties, also taking into account the kind of fluid (its Prandtl number Pr). For this purpose we can write the
equation for conservation of the pulsation heat flux [11]. For the case given, the solution obtained in [11]
for this equation has the form

€=y (Rr) (10)
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where Ry, = (L*p/u)(@U/87) is the local Reynolds number; Pr = uCp/ A is the Prandtl number.

Thus by making use of the dependences of the thermophysical properfies of the fluid on the tempera-
ture and pressure we can close the system (1)-(3), (8).

The boundary conditions for the problem given take the form
U=V=E=0T=T4,(x. (12)

at the wall. After solving the system (1)-(3), (8) with the appropriate initial conditions, we determine the
friction stresses at the wall by means of the familiar Newton law ’
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and the heat flux density at the wall from the familiar Fourier law
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We may write (2), (3), (8) in general form as
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where f stands for the unknown variable for which we solve (15). The parameters a, b, ¢, d, e are non-
linear in the general case and may be functions of the independent variables themselves.

The flow region is partitioned by an orthogonal net; we consider the points located at the nodes of
this net. To reduce the number of node points we carry out the calculations in 2 modified coordinate sys-
tem; for a constant step it permits us to "compress" the coordinate in the r direction at the wall where
the rate of change in f is greatest, and to "expand" this coordinate in the flow core where the variation in
f is smoother. This corresponds to a coordinate of the form

z = tgyr, (16)
where i = (r/2—0)/h, ando is the displacement away from n/2.

Going over to the new variable, we write the derivatives with respect to r as
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YW, ! We replace the differential operators in (18) by finite-differ-

’ ence analogs, using the implicit scheme
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Fig. 3. Velocity profile over stabil-

ized section of turbulent flow; solid After certain manipulations we have
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When (2} is expressed in the form (20) the right side looks like this:
B = 8, — gP : (22)
)x

In writing (21), (22) we assumed that the z-coordinate step is constant. The continuity equation (1) is so
solved in explicit form and in natural coordinates:

for a flat channel:
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while for an annular channel and a round tube
Vo = oV + = o o+ Ui — U, (24)

Fquations (20) are solved by the factorization method [12].
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Fig. 4. Comparison of calculated and experimental data

on heat transfer; solid line) calculated dash-dot line)

Nuf x = 0. OZIRE SPr‘f) 43(x/deqmv) 2(Prf,x /Pry)"%; 1)
To/ Ty = 1.0, 2) 0.9, 3) 0.8, 4) 0.75. Pry =1.8.
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Fig. 5. Velocity and temperature profiles for nonsymmetric flow
in flat channel.

Fig. 6. Comparison of calculations with experimental data of [14];
solid line) calculated; dots) experimental data; T, °K.

We use the condition (4) to find the unknown pressure gradient 8P/8x in (2). For this purpose we
represent the function fi* = U as

o= U =W KT 25)

After substituting (25) into (20) we obtain two equations for an and Krrln:
a, Wi B Wy W = DI (26)
P KT B K =, KT = ), (27)

which are solvable by factorization with zero boundary conditions.

Determining ng and Kg‘, we substitute (25) into (4). Then we have
M
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where vl = pg‘(rgl" ~ ") for a flat channel and v = PRI~ 12— (r10)?] for an annular channel of round
tube. After finding 0P/0x from (25) we determine the values of Uﬁ“. Our program was run on a BESM-4

computer.

We used experimental data and exact solutions obtained for simple cases of flow to check the calcu-
lation method. Laminar and turbulent flows of liquids and gases were considered. Figure 3 shows the
caleulated velocity profile over a stabilized section of an isothermal turbulent flow in a round tube and a
flat channel. The calculations clearly agree with the experimental data of various authors. Figure 4
shows calculated data for convective heat transfer in annular and flat channels for turbulent flow of a liquid;
the results are in fairly good agreement with experimental data processed as well known criterial relation-
ships [13]. Figure 5 shows data calculated for nonsymmetric flow of a liquid in a flat channel. Figure 6
compares calculated values with the experimental data of [14] for nonsymmetric heat transfer of air in a
flat channel. Our calculations have shown that it is possible to use the method developed in calculations
for both simple and complex cases of heat transfer in channels having various cross sections.

NOTATION
X, T are the rectangular coordinates along the flow and normal to the wall;
U, Vv are the velocities along the x and r coordinates, respectively;
P is the pressure;
T is the temperature;
p' is the pressure fluctuation;
u', v’ are the velocity pulsations along the x and r axes;
Q is the density;
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i is the dynamic viscosity coefficient;

Cp is the specific heat at constant pressure;

A is the thermal-conductivity coefficient;

o' is the temperature fluctuation;

€ is the rate of dissipation of the kinetic energy of pulsation motions;
ux is the dynamic velocity;

T\lzv is the temperature of the lower channel wall;

T% is the temperature of the upper channel wall;

h is the channel half-width.

Subsecripts

o conditions at channel inlet;

w conditions at wall;

f parameters determined for average-mass temperature of fluid at given channel cross section;

X running value,
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